Description
Pretrained RoBertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. roberta-base-finetuned-osdg
is a English model originally trained by peter2000
.
Predicted Entities
sdg_12
, sdg_3
, sdg_9
, sdg_4
, sdg_6
, sdg_13
, sdg_14
, sdg_15
, sdg_1
, sdg_7
, sdg_2
, sdg_5
, sdg_8
, sdg_11
, sdg_10
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_base_finetuned_osdg","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_base_finetuned_osdg","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.roberta.base_finetuned.by_peter2000").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | roberta_classifier_base_finetuned_osdg |
Compatibility: | Spark NLP 4.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | en |
Size: | 455.5 MB |
Case sensitive: | true |
Max sentence length: | 256 |
References
- https://huggingface.co/peter2000/roberta-base-finetuned-osdg
- https://osdg.ai/