Description
Pretrained RoBertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. unbiased-toxic-roberta
is a English model originally trained by unitary
.
Predicted Entities
christian
, jewish
, homosexual_gay_or_lesbian
, black
, threat
, female
, toxicity
, white
, muslim
, identity_attack
, severe_toxicity
, psychiatric_or_mental_illness
, sexual_explicit
, insult
, male
, obscene
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_unbiased_toxic","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_unbiased_toxic","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.roberta.by_unitary").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | roberta_classifier_unbiased_toxic |
Compatibility: | Spark NLP 4.1.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | en |
Size: | 473.6 MB |
Case sensitive: | true |
Max sentence length: | 256 |
References
- https://huggingface.co/unitary/unbiased-toxic-roberta
- https://github.com/unitaryai/detoxify
- https://laurahanu.github.io/
- https://www.unitary.ai/
- https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
- https://homes.cs.washington.edu/~msap/pdfs/sap2019risk.pdf
- https://arxiv.org/pdf/1703.04009.pdf%201.pdf
- https://arxiv.org/pdf/1905.12516.pdf