English RoBertaForSequenceClassification Base Cased model (from m3hrdadfi)

Description

Pretrained RoBertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. zabanshenas-roberta-base-mix is a English model originally trained by m3hrdadfi.

Predicted Entities

mon, mdf, sun, bho, bxr, kaz, mrj, nld, dty, ben, mlt, arz, fur, pan, rup, ilo, srp, mwl, tat, mhr, som, vie, bjn, krc, mzn, nno, tur, bel, olo, mya, tam, pus, roh, ido, pdc, nds, ltg, lit, fas, kin, lao, lav, egl, lzh, afr, bod, map-bms, ina, pfl, wln, war, mri, ton, nap, hye, oci, new, gle, kbd, eng, nav, que, lug, cym, pol, sah, nds-nl, tuk, bul, chr, isl, ava, orm, scn, nan, azb, aym, slk, szl, wuu, sco, sgs, srd, mai, lad, amh, cdo, urd, nrm, por, cbk, san, sin, lrc, ukr, lez, vec, uig, ceb, tgl, glg, cat, pam, eus, chv, kir, nep, vol, est, dan, hsb, kor, nob, ara, ile, jam, srn, lat, zho, snd, epo, fry, swe, xmf, cos, bak, vls, ces, tel, ckb, zea, lim, nci, ron, lin, uzb, kat, aze, frp, hau, hbs, ibo, bpy, glv, heb, rus, kan, che, tsn, bcl, min, hat, fra, yid, kom, ast, ita, be-tarask, myv, tcy, lij, hak, sqi, gla, glk, sme, pap, mlg, ell, tha, hrv, tet, asm, als, crh, vep, pcd, sna, slv, diq, kur, dsb, jbo, ext, ind, yor, ori, mal, guj, grn, vro, spa, fin, cor, bre, nso, roa-tara, udm, tgk, jpn, hun, csb, bos, jav, bar, fao, ang, pag, hin, arg, stq, gag, hif, zh-yue, msa, kok, xho, koi, ltz, rue, wol, ace, kaa, lmo, swa, oss, kab, ksh, mkd, pnb, khm, deu, tyv, div, mar

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_zabanshenas_base_mix","xx") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
      .setInputCols(Array("text"))
      .setOutputCols(Array("document"))

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_zabanshenas_base_mix","xx")
    .setInputCols(Array("document", "token"))
    .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("xx.classify.roberta.base").predict("""PUT YOUR STRING HERE""")

Model Information

Model Name: roberta_classifier_zabanshenas_base_mix
Compatibility: Spark NLP 4.1.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [class]
Language: xx
Size: 416.6 MB
Case sensitive: true
Max sentence length: 256

References

  • https://huggingface.co/m3hrdadfi/zabanshenas-roberta-base-mix
  • https://github.com/m3hrdadfi/zabanshenas