Description
Pretrained RoBertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. zabanshenas-roberta-base-mix is a English model originally trained by m3hrdadfi.
Predicted Entities
mon, mdf, sun, bho, bxr, kaz, mrj, nld, dty, ben, mlt, arz, fur, pan, rup, ilo, srp, mwl, tat, mhr, som, vie, bjn, krc, mzn, nno, tur, bel, olo, mya, tam, pus, roh, ido, pdc, nds, ltg, lit, fas, kin, lao, lav, egl, lzh, afr, bod, map-bms, ina, pfl, wln, war, mri, ton, nap, hye, oci, new, gle, kbd, eng, nav, que, lug, cym, pol, sah, nds-nl, tuk, bul, chr, isl, ava, orm, scn, nan, azb, aym, slk, szl, wuu, sco, sgs, srd, mai, lad, amh, cdo, urd, nrm, por, cbk, san, sin, lrc, ukr, lez, vec, uig, ceb, tgl, glg, cat, pam, eus, chv, kir, nep, vol, est, dan, hsb, kor, nob, ara, ile, jam, srn, lat, zho, snd, epo, fry, swe, xmf, cos, bak, vls, ces, tel, ckb, zea, lim, nci, ron, lin, uzb, kat, aze, frp, hau, hbs, ibo, bpy, glv, heb, rus, kan, che, tsn, bcl, min, hat, fra, yid, kom, ast, ita, be-tarask, myv, tcy, lij, hak, sqi, gla, glk, sme, pap, mlg, ell, tha, hrv, tet, asm, als, crh, vep, pcd, sna, slv, diq, kur, dsb, jbo, ext, ind, yor, ori, mal, guj, grn, vro, spa, fin, cor, bre, nso, roa-tara, udm, tgk, jpn, hun, csb, bos, jav, bar, fao, ang, pag, hin, arg, stq, gag, hif, zh-yue, msa, kok, xho, koi, ltz, rue, wol, ace, kaa, lmo, swa, oss, kab, ksh, mkd, pnb, khm, deu, tyv, div, mar
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_zabanshenas_base_mix","xx") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, seq_classifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols(Array("text"))
.setOutputCols(Array("document"))
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val seq_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_zabanshenas_base_mix","xx")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, seq_classifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("xx.classify.roberta.base").predict("""PUT YOUR STRING HERE""")
Model Information
| Model Name: | roberta_classifier_zabanshenas_base_mix |
| Compatibility: | Spark NLP 4.1.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [class] |
| Language: | xx |
| Size: | 416.6 MB |
| Case sensitive: | true |
| Max sentence length: | 256 |
References
- https://huggingface.co/m3hrdadfi/zabanshenas-roberta-base-mix
- https://github.com/m3hrdadfi/zabanshenas