Arabic BertForSequenceClassification Cased model (from M47Labs)

Description

Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. arabert_multiclass_news is a Arabic model originally trained by M47Labs.

Predicted Entities

sports, politics, culture, tech, religion, medical, finance

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
        .setInputCol("text") \
        .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_ara_multiclass_news","ar") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")

pipeline = Pipeline(stages=[documentAssembler, tokenizer,sequenceClassifier_loaded])

data = spark.createDataFrame([["أنا أحب الشرارة NLP"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
          .setInputCol("text") 
          .setOutputCol("document")

val tokenizer = new Tokenizer() 
    .setInputCols(Array("document"))
    .setOutputCol("token")

val sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_ara_multiclass_news","ar") 
    .setInputCols(Array("document", "token")) 
    .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer,sequenceClassifier_loaded))

val data = Seq("أنا أحب الشرارة NLP").toDF("text")

val result = pipeline.fit(data).transform(data)

Model Information

Model Name: bert_classifier_ara_multiclass_news
Compatibility: Spark NLP 4.2.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [class]
Language: ar
Size: 414.8 MB
Case sensitive: true
Max sentence length: 256

References

  • https://huggingface.co/M47Labs/arabert_multiclass_news