Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. arabert_multiclass_news is a Arabic model originally trained by M47Labs.
Predicted Entities
sports, politics, culture, tech, religion, medical, finance
How to use
documentAssembler = DocumentAssembler() \
        .setInputCol("text") \
        .setOutputCol("document")
tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")
sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_ara_multiclass_news","ar") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer,sequenceClassifier_loaded])
data = spark.createDataFrame([["أنا أحب الشرارة NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
          .setInputCol("text") 
          .setOutputCol("document")
val tokenizer = new Tokenizer() 
    .setInputCols(Array("document"))
    .setOutputCol("token")
val sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_ara_multiclass_news","ar") 
    .setInputCols(Array("document", "token")) 
    .setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer,sequenceClassifier_loaded))
val data = Seq("أنا أحب الشرارة NLP").toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | bert_classifier_ara_multiclass_news | 
| Compatibility: | Spark NLP 4.2.0+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [document, token] | 
| Output Labels: | [class] | 
| Language: | ar | 
| Size: | 414.8 MB | 
| Case sensitive: | true | 
| Max sentence length: | 256 | 
References
- https://huggingface.co/M47Labs/arabert_multiclass_news