Swedish BertForSequenceClassification Base Cased model (from marma)

Description

Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-swedish-cased-sentiment is a Swedish model originally trained by marma.

Predicted Entities

NEGATIVE, POSITIVE

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
        .setInputCol("text") \
        .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_base_swedish_cased_sentiment","sv") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")

pipeline = Pipeline(stages=[documentAssembler, tokenizer,sequenceClassifier_loaded])

data = spark.createDataFrame([["Jag älskar Spark NLP"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
          .setInputCol("text")
          .setOutputCol("document")

val tokenizer = new Tokenizer()
    .setInputCols(Array("document"))
    .setOutputCol("token")

val sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_base_swedish_cased_sentiment","sv")
    .setInputCols(Array("document", "token"))
    .setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer,sequenceClassifier_loaded))

val data = Seq("Jag älskar Spark NLP").toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("sv.classify.bert.sentiment.cased_base").predict("""Jag älskar Spark NLP""")

Model Information

Model Name: bert_classifier_base_swedish_cased_sentiment
Compatibility: Spark NLP 4.2.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [class]
Language: sv
Size: 468.0 MB
Case sensitive: true
Max sentence length: 256

References

  • https://huggingface.co/marma/bert-base-swedish-cased-sentiment