Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-uncased-finetuned-clinc
is a English model originally trained by transformersbook
.
Predicted Entities
timezone
, are_you_a_bot
, improve_credit_score
, taxes
, no
, todo_list_update
, schedule_maintenance
, fun_fact
, make_call
, insurance
, payday
, vaccines
, routing
, order_status
, pto_request
, where_are_you_from
, do_you_have_pets
, redeem_rewards
, calendar_update
, directions
, smart_home
, calculator
, international_fees
, mpg
, credit_limit
, goodbye
, interest_rate
, car_rental
, calories
, change_volume
, change_language
, next_song
, weather
, next_holiday
, meaning_of_life
, oos
, spending_history
, shopping_list_update
, cancel
, traffic
, oil_change_how
, reset_settings
, ingredients_list
, travel_notification
, pto_used
, international_visa
, uber
, date
, carry_on
, definition
, report_lost_card
, exchange_rate
, last_maintenance
, confirm_reservation
, card_declined
, what_is_your_name
, plug_type
, tell_joke
, user_name
, reminder
, restaurant_reviews
, account_blocked
, recipe
, damaged_card
, time
, alarm
, cook_time
, roll_dice
, text
, book_flight
, rollover_401k
, find_phone
, replacement_card_duration
, greeting
, travel_suggestion
, lost_luggage
, order
, ingredient_substitution
, what_song
, bill_balance
, food_last
, order_checks
, measurement_conversion
, shopping_list
, nutrition_info
, current_location
, timer
, yes
, reminder_update
, flip_coin
, thank_you
, min_payment
, meal_suggestion
, spelling
, translate
, who_made_you
, balance
, new_card
, credit_limit_change
, how_busy
, oil_change_when
, sync_device
, restaurant_reservation
, flight_status
, change_ai_name
, direct_deposit
, travel_alert
, w2
, tire_pressure
, change_user_name
, calendar
, pay_bill
, who_do_you_work_for
, repeat
, restaurant_suggestion
, cancel_reservation
, distance
, pto_request_status
, income
, how_old_are_you
, report_fraud
, transfer
, bill_due
, what_are_your_hobbies
, accept_reservations
, credit_score
, change_speed
, whisper_mode
, book_hotel
, pin_change
, transactions
, gas
, meeting_schedule
, gas_type
, expiration_date
, play_music
, update_playlist
, freeze_account
, change_accent
, jump_start
, application_status
, share_location
, insurance_change
, tire_change
, rewards_balance
, what_can_i_ask_you
, pto_balance
, apr
, schedule_meeting
, todo_list
, maybe
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_base_uncased_finetuned_clinc","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer,sequenceClassifier_loaded])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_base_uncased_finetuned_clinc","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer,sequenceClassifier_loaded))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.bert.uncased_base_finetuned.by_transformersbook").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | bert_classifier_base_uncased_finetuned_clinc |
Compatibility: | Spark NLP 4.2.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | en |
Size: | 410.4 MB |
Case sensitive: | false |
Max sentence length: | 256 |
References
- https://huggingface.co/transformersbook/bert-base-uncased-finetuned-clinc
- https://arxiv.org/abs/1909.02027
- https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/
- https://github.com/nlp-with-transformers/notebooks/blob/main/08_model-compression.ipynb