Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-uncased-finetuned-clinc is a English model originally trained by transformersbook.
Predicted Entities
timezone, are_you_a_bot, improve_credit_score, taxes, no, todo_list_update, schedule_maintenance, fun_fact, make_call, insurance, payday, vaccines, routing, order_status, pto_request, where_are_you_from, do_you_have_pets, redeem_rewards, calendar_update, directions, smart_home, calculator, international_fees, mpg, credit_limit, goodbye, interest_rate, car_rental, calories, change_volume, change_language, next_song, weather, next_holiday, meaning_of_life, oos, spending_history, shopping_list_update, cancel, traffic, oil_change_how, reset_settings, ingredients_list, travel_notification, pto_used, international_visa, uber, date, carry_on, definition, report_lost_card, exchange_rate, last_maintenance, confirm_reservation, card_declined, what_is_your_name, plug_type, tell_joke, user_name, reminder, restaurant_reviews, account_blocked, recipe, damaged_card, time, alarm, cook_time, roll_dice, text, book_flight, rollover_401k, find_phone, replacement_card_duration, greeting, travel_suggestion, lost_luggage, order, ingredient_substitution, what_song, bill_balance, food_last, order_checks, measurement_conversion, shopping_list, nutrition_info, current_location, timer, yes, reminder_update, flip_coin, thank_you, min_payment, meal_suggestion, spelling, translate, who_made_you, balance, new_card, credit_limit_change, how_busy, oil_change_when, sync_device, restaurant_reservation, flight_status, change_ai_name, direct_deposit, travel_alert, w2, tire_pressure, change_user_name, calendar, pay_bill, who_do_you_work_for, repeat, restaurant_suggestion, cancel_reservation, distance, pto_request_status, income, how_old_are_you, report_fraud, transfer, bill_due, what_are_your_hobbies, accept_reservations, credit_score, change_speed, whisper_mode, book_hotel, pin_change, transactions, gas, meeting_schedule, gas_type, expiration_date, play_music, update_playlist, freeze_account, change_accent, jump_start, application_status, share_location, insurance_change, tire_change, rewards_balance, what_can_i_ask_you, pto_balance, apr, schedule_meeting, todo_list, maybe
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_base_uncased_finetuned_clinc","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer,sequenceClassifier_loaded])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_base_uncased_finetuned_clinc","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer,sequenceClassifier_loaded))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.bert.uncased_base_finetuned.by_transformersbook").predict("""PUT YOUR STRING HERE""")
Model Information
| Model Name: | bert_classifier_base_uncased_finetuned_clinc |
| Compatibility: | Spark NLP 4.2.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [class] |
| Language: | en |
| Size: | 410.4 MB |
| Case sensitive: | false |
| Max sentence length: | 256 |
References
- https://huggingface.co/transformersbook/bert-base-uncased-finetuned-clinc
- https://arxiv.org/abs/1909.02027
- https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/
- https://github.com/nlp-with-transformers/notebooks/blob/main/08_model-compression.ipynb