Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. BETO_4d
is a English model originally trained by ismaelardo
.
Predicted Entities
9411
, 2433
, 8322
, 1323
, 5414
, 9412
, 2413
, 3343
, 1212
, 2522
, 9621
, 4321
, 2242
, 4225
, 7212
, 3331
, 5249
, 8344
, 2351
, 2431
, 3411
, 2411
, 1330
, 3322
, 1345
, 7127
, 8332
, 5223
, 5242
, 9333
, 2221
, 3511
, 4416
, 2141
, 3251
, 2161
, 4226
, 3344
, 5230
, 1324
, 3111
, 1219
, 3311
, 3257
, 2423
, 3512
, 2519
, 4323
, 9112
, 2143
, 2310
, 3321
, 5244
, 2635
, 4110
, 2421
, 7412
, 3118
, 5222
, 8343
, 1221
, 3122
, 2521
, 3115
, 2330
, 2529
, 3313
, 1211
, 3112
, 3611
, 2341
, 3113
, 2243
, 2513
, 8321
, 2342
, 3323
, 2145
, 2151
, 7233
, 2512
, 4214
, 3221
, 2424
, 2166
, 4222
, 3432
, 2642
, 2144
, 1412
, 2511
, 5120
, 9334
, 7231
, 4211
, 9321
, 2142
, 3142
, 2634
, 3312
, 3114
, 4311
, 1420
, 3334
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_beto_4d","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer,sequenceClassifier_loaded])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_beto_4d","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer,sequenceClassifier_loaded))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.beto_bert").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | bert_classifier_beto_4d |
Compatibility: | Spark NLP 4.2.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | en |
Size: | 412.7 MB |
Case sensitive: | true |
Max sentence length: | 256 |
References
- https://huggingface.co/ismaelardo/BETO_4d