Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. CL_1
is a English model originally trained by yuan1729
.
Predicted Entities
搶奪強盜及海盜罪
, 藏匿人犯及湮滅證據罪
, 賭博罪
, 侵占罪
, 遺棄罪
, 恐嚇及擄人勒贖罪
, 殺人罪
, 妨害秩序罪
, 偽證及誣告罪
, 妨害電腦使用罪
, 妨害風化罪
, 瀆職罪
, 妨害婚姻及家庭罪
, 竊盜罪
, 妨害名譽及信用罪
, 傷害罪
, 妨害性自主罪
, 贓物罪
, 妨害自由罪
, 妨害秘密罪
, 妨害公務罪
, 詐欺背信及重利罪
, 妨害投票罪
, 偽造文書印文罪
, 偽造有價證券罪
, 公共危險罪
, 毀棄損壞罪
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_cl_1","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer,sequenceClassifier_loaded])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_cl_1","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer,sequenceClassifier_loaded))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | bert_classifier_cl_1 |
Compatibility: | Spark NLP 4.2.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | en |
Size: | 383.8 MB |
Case sensitive: | true |
Max sentence length: | 256 |
References
- https://huggingface.co/yuan1729/CL_1