Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. Medical_Article_Classifier_by_ICD-11_Chapter is a English model originally trained by justpyschitry.
Predicted Entities
diseases of the digestive system, Developmental anaomalies, Mental behavioural or neurodevelopmental disorders, endocrine nutritional or metabolic diseases, certain conditions originating in the perinatal period, diseases of the circulatroy system, diseases of the immune system, Certain infectious or parasitic diseases, diseases of the nervous system, Diseases of the genitourinary system, diseases of the respiratory system, Neoplasms, diseases of the visual system, diseases of the musculoskeletal system or connective tissue, Diseases of the blood or blood forming organs, sleep-wake disorders, diseases of the skin, pregnanacy childbirth or the puerperium, diseases of the ear or mastoid process, conditions related to sexual health
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_medical_article_by_icd_11_chapter","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer,sequenceClassifier_loaded])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_medical_article_by_icd_11_chapter","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer,sequenceClassifier_loaded))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.bert.by_justpyschitry").predict("""PUT YOUR STRING HERE""")
Model Information
| Model Name: | bert_classifier_medical_article_by_icd_11_chapter |
| Compatibility: | Spark NLP 4.2.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [class] |
| Language: | en |
| Size: | 410.0 MB |
| Case sensitive: | true |
| Max sentence length: | 256 |
References
- https://huggingface.co/justpyschitry/Medical_Article_Classifier_by_ICD-11_Chapter