Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. Medical_Article_Classifier_by_ICD-11_Chapter
is a English model originally trained by justpyschitry
.
Predicted Entities
diseases of the digestive system
, Developmental anaomalies
, Mental behavioural or neurodevelopmental disorders
, endocrine nutritional or metabolic diseases
, certain conditions originating in the perinatal period
, diseases of the circulatroy system
, diseases of the immune system
, Certain infectious or parasitic diseases
, diseases of the nervous system
, Diseases of the genitourinary system
, diseases of the respiratory system
, Neoplasms
, diseases of the visual system
, diseases of the musculoskeletal system or connective tissue
, Diseases of the blood or blood forming organs
, sleep-wake disorders
, diseases of the skin
, pregnanacy childbirth or the puerperium
, diseases of the ear or mastoid process
, conditions related to sexual health
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_medical_article_by_icd_11_chapter","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer,sequenceClassifier_loaded])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_medical_article_by_icd_11_chapter","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer,sequenceClassifier_loaded))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.bert.by_justpyschitry").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | bert_classifier_medical_article_by_icd_11_chapter |
Compatibility: | Spark NLP 4.2.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | en |
Size: | 410.0 MB |
Case sensitive: | true |
Max sentence length: | 256 |
References
- https://huggingface.co/justpyschitry/Medical_Article_Classifier_by_ICD-11_Chapter