Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. sent_chineses is a Chinese model originally trained by lgodwangl.
Predicted Entities
positive, negative, neutral
How to use
documentAssembler = DocumentAssembler() \
        .setInputCol("text") \
        .setOutputCol("document")
tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")
sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_sent_chineses","zh") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer,sequenceClassifier_loaded])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
          .setInputCol("text") 
          .setOutputCol("document")
val tokenizer = new Tokenizer() 
    .setInputCols(Array("document"))
    .setOutputCol("token")
val sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_sent_chineses","zh") 
    .setInputCols(Array("document", "token")) 
    .setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer,sequenceClassifier_loaded))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("zh.classify.bert.by_lgodwangl").predict("""PUT YOUR STRING HERE""")
Model Information
| Model Name: | bert_classifier_sent_chineses | 
| Compatibility: | Spark NLP 4.2.0+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [document, token] | 
| Output Labels: | [class] | 
| Language: | zh | 
| Size: | 383.5 MB | 
| Case sensitive: | true | 
| Max sentence length: | 256 | 
References
- https://huggingface.co/lgodwangl/sent_chineses