Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. topic_v5
is a English model originally trained by slowturtle
.
Predicted Entities
bottlenecks
, responsability
, srcs
, justify
, agree
, procedures
, world
, experience
, planning
, jobrole
, efficiency
, ergonomics
, suggestion
, motivation_commitment
, shame
, impact
, career
, timesheet
, transport
, autonomy
, collaboration
, personal
, burnout_stress
, integration
, employee
, relationship
, mental_health
, learning
, proud
, delivery
, communication
, bureaucracy
, support
, ethics
, turnover
, changes
, lifebalance
, rwxp
, fear
, workload
, environment
, improvement
, pandemics
, allgood
, diversity
, questioning_criticism
, clients
, salary
, safety
, performance
, health
, clarity
, growth
, behaviour
, product
, recognition
, challenges
, skills
, facilities
, respect
, routine
, benefits
, leadership
, training
, culture_values
, feedback
, disagree
, attrition
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_topic_v5","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer,sequenceClassifier_loaded])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_topic_v5","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer,sequenceClassifier_loaded))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.bert.by_slowturtle").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | bert_classifier_topic_v5 |
Compatibility: | Spark NLP 4.2.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | en |
Size: | 408.9 MB |
Case sensitive: | true |
Max sentence length: | 256 |
References
- https://huggingface.co/slowturtle/topic_v5