Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. topic_v5 is a English model originally trained by slowturtle.
Predicted Entities
bottlenecks, responsability, srcs, justify, agree, procedures, world, experience, planning, jobrole, efficiency, ergonomics, suggestion, motivation_commitment, shame, impact, career, timesheet, transport, autonomy, collaboration, personal, burnout_stress, integration, employee, relationship, mental_health, learning, proud, delivery, communication, bureaucracy, support, ethics, turnover, changes, lifebalance, rwxp, fear, workload, environment, improvement, pandemics, allgood, diversity, questioning_criticism, clients, salary, safety, performance, health, clarity, growth, behaviour, product, recognition, challenges, skills, facilities, respect, routine, benefits, leadership, training, culture_values, feedback, disagree, attrition
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_topic_v5","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer,sequenceClassifier_loaded])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_topic_v5","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer,sequenceClassifier_loaded))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.bert.by_slowturtle").predict("""PUT YOUR STRING HERE""")
Model Information
| Model Name: | bert_classifier_topic_v5 |
| Compatibility: | Spark NLP 4.2.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [class] |
| Language: | en |
| Size: | 408.9 MB |
| Case sensitive: | true |
| Max sentence length: | 256 |
References
- https://huggingface.co/slowturtle/topic_v5