Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. xtremedistil-l6-h384-go-emotion is a English model originally trained by bergum.
Predicted Entities
confusion 😕, nervousness 😬, gratitude 🙏, optimism 🤞, fear 😨, remorse 😞, excitement 🤩, relief 😅, disgust 🤮, sadness 😞, approval 👍, admiration 👏, amusement 😂, love ❤️, disapproval 👎, pride 😌, joy 😃, annoyance 😒, grief 😢, anger 😡, surprise 😲, embarrassment 😳, curiosity 🤔, realization 💡, caring 🤗, desire 😍, neutral 😐, disappointment 😞
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_xtremedistil_l6_h384_go_emotion","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer,sequenceClassifier_loaded])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")
val sequenceClassifier_loaded = BertForSequenceClassification.pretrained("bert_classifier_xtremedistil_l6_h384_go_emotion","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer,sequenceClassifier_loaded))
val data = Seq("PUT YOUR STRING HERE").toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | bert_classifier_xtremedistil_l6_h384_go_emotion |
| Compatibility: | Spark NLP 4.2.0+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [class] |
| Language: | en |
| Size: | 84.5 MB |
| Case sensitive: | true |
| Max sentence length: | 256 |
References
- https://huggingface.co/bergum/xtremedistil-l6-h384-go-emotion
- https://colab.research.google.com/github/jobergum/emotion/blob/main/TrainGoEmotions.ipynb
- https://aiserv.cloud/
- https://github.com/jobergum/browser-ml-inference
- https://paperswithcode.com/sota?task=Multi+Label+Text+Classification&dataset=go_emotions