English asr_wav2vec2_base_960h TFWav2Vec2ForCTC from facebook

Description

Pretrained Wav2vec2 model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.asr_wav2vec2_base_960h is a English model originally trained by facebook.

NOTE: This model only works on a CPU, if you need to use this model on a GPU device please use asr_wav2vec2_base_960h_gpu

Download Copy S3 URI

How to use


    audio_assembler = AudioAssembler() \
        .setInputCol("audio_content") \
        .setOutputCol("audio_assembler")

    speech_to_text = Wav2Vec2ForCTC \
        .pretrained("asr_wav2vec2_base_960h", "en")\
        .setInputCols("audio_assembler") \
        .setOutputCol("text")

    pipeline = Pipeline(stages=[
      audio_assembler,
      speech_to_text,
    ])

    pipelineModel = pipeline.fit(audioDf)

    pipelineDF = pipelineModel.transform(audioDf)

    val audioAssembler = new AudioAssembler()
        .setInputCol("audio_content") 
        .setOutputCol("audio_assembler")

    val speechToText = Wav2Vec2ForCTC
        .pretrained("asr_wav2vec2_base_960h", "en")
        .setInputCols("audio_assembler") 
        .setOutputCol("text") 

    val pipeline = new Pipeline().setStages(Array(audioAssembler, speechToText))

    val pipelineModel = pipeline.fit(audioDf)

    val pipelineDF = pipelineModel.transform(audioDf)
    

Model Information

Model Name: asr_wav2vec2_base_960h
Compatibility: Spark NLP 4.2.0+
License: Open Source
Edition: Official
Input Labels: [audio_assembler]
Output Labels: [text]
Language: en
Size: 227.6 MB