French CamembertForTokenClassification Cased model (from taln-ls2n)

Description

Pretrained CamembertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. POET is a French model originally trained by taln-ls2n.

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
        .setInputCol("text") \
        .setOutputCol("document")
        
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")

tokenizer = Tokenizer() \
    .setInputCols("sentence") \
    .setOutputCol("token")

sequenceClassifier_loaded = CamemBertForTokenClassification.pretrained("camembert_classifier_poet","fr") \
    .setInputCols(["sentence", "token"]) \
    .setOutputCol("pos")

pipeline = Pipeline(stages=[documentAssembler,sentenceDetector,tokenizer,sequenceClassifier_loaded])

data = spark.createDataFrame([["J'adore Spark NLP"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
          .setInputCol("text") 
          .setOutputCol("document")

val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
       .setInputCols(Array("document"))
       .setOutputCol("sentence")

val tokenizer = new Tokenizer() 
    .setInputCols(Array("sentence"))
    .setOutputCol("token")

val sequenceClassifier_loaded = CamemBertForTokenClassification.pretrained("camembert_classifier_poet","fr") 
    .setInputCols(Array("sentence", "token")) 
    .setOutputCol("pos")

val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector,tokenizer,sequenceClassifier_loaded))

val data = Seq("J'adore Spark NLP").toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("fr.ner.camembert.antilles.").predict("""J'adore Spark NLP""")

Model Information

Model Name: camembert_classifier_poet
Compatibility: Spark NLP 4.2.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [class]
Language: fr
Size: 410.2 MB
Case sensitive: true
Max sentence length: 256

References

  • https://huggingface.co/taln-ls2n/POET
  • https://github.com/qanastek/ANTILLES
  • https://arxiv.org/abs/1911.03894
  • https://www.linkedin.com/in/yanis-labrak-8a7412145/
  • https://cv.archives-ouvertes.fr/richard-dufour
  • https://lia.univ-avignon.fr/
  • https://www.ls2n.fr/equipe/taln/
  • https://pypi.org/project/transformers/
  • https://universaldependencies.org/treebanks/fr_gsd/index.html
  • https://github.com/ryanmcd/uni-dep-tb
  • http://pageperso.lif.univ-mrs.fr/frederic.bechet/download.html
  • http://pageperso.lif.univ-mrs.fr/frederic.bechet/index-english.html
  • https://github.com/qanastek/ANTILLES
  • https://universaldependencies.org/format.html
  • https://github.com/qanastek/ANTILLES/blob/main/ANTILLES/test.conllu
  • https://zenidoc.fr/
  • https://anr-diets.univ-avignon.fr
  • https://anr.fr/en/funded-projects-and-impact/funded-projects/project/funded/project/b2d9d3668f92a3b9fbbf7866072501ef-fd7e69d902/?tx_anrprojects_funded%5Bcontroller%5D=Funded&cHash=cb6d54d24c9e21e0d50fabf46bd56646