English CamembertForTokenClassification Cased model (from cassandra-themis)

Description

Pretrained CamembertForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. test_tcp_ca is a English model originally trained by cassandra-themis.

Predicted Entities

date_du_jugement, juridiction_decision, date_de_naissance, formation_jugement, date_de_decision, formation_decision, juridiction_jugement, condamne, id_jugement, id_decision, defendeur, demandeur

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
        .setInputCol("text") \
        .setOutputCol("document")
        
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")

tokenizer = Tokenizer() \
    .setInputCols("sentence") \
    .setOutputCol("token")

sequenceClassifier_loaded = CamemBertForTokenClassification.pretrained("camembert_classifier_test_tcp_ca_cassandra_themis","en") \
    .setInputCols(["sentence", "token"]) \
    .setOutputCol("ner")

pipeline = Pipeline(stages=[documentAssembler,sentenceDetector,tokenizer,sequenceClassifier_loaded])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
          .setInputCol("text") 
          .setOutputCol("document")

val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")
       .setInputCols(Array("document"))
       .setOutputCol("sentence")

val tokenizer = new Tokenizer() 
    .setInputCols(Array("sentence"))
    .setOutputCol("token")

val sequenceClassifier_loaded = CamemBertForTokenClassification.pretrained("camembert_classifier_test_tcp_ca_cassandra_themis","en") 
    .setInputCols(Array("sentence", "token")) 
    .setOutputCol("ner")

val pipeline = new Pipeline().setStages(Array(documentAssembler,sentenceDetector,tokenizer,sequenceClassifier_loaded))

val data = Seq("PUT YOUR STRING HERE").toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.ner.camembert.by_cassandra_themis").predict("""PUT YOUR STRING HERE""")

Model Information

Model Name: camembert_classifier_test_tcp_ca_cassandra_themis
Compatibility: Spark NLP 4.2.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [class]
Language: en
Size: 413.5 MB
Case sensitive: true
Max sentence length: 256

References

  • https://huggingface.co/cassandra-themis/test_tcp_ca