Description
Pretrained Wav2vec2  model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.asr_wav2vec2_large_xls_r_300m_hindi_kaggle is a Hindi model originally trained by Saitomar.
NOTE: This model only works on a CPU, if you need to use this model on a GPU device please use asr_wav2vec2_large_xls_r_300m_hindi_kaggle_gpu
How to use
audio_assembler = AudioAssembler() \
    .setInputCol("audio_content") \
    .setOutputCol("audio_assembler")
speech_to_text = Wav2Vec2ForCTC \
    .pretrained("asr_wav2vec2_large_xls_r_300m_hindi_kaggle", "hi")\
    .setInputCols("audio_assembler") \
    .setOutputCol("text")
pipeline = Pipeline(stages=[
  audio_assembler,
  speech_to_text,
])
pipelineModel = pipeline.fit(audioDf)
pipelineDF = pipelineModel.transform(audioDf)
val audioAssembler = new AudioAssembler()
    .setInputCol("audio_content") 
    .setOutputCol("audio_assembler")
val speechToText = Wav2Vec2ForCTC
    .pretrained("asr_wav2vec2_large_xls_r_300m_hindi_kaggle", "hi")
    .setInputCols("audio_assembler") 
    .setOutputCol("text") 
val pipeline = new Pipeline().setStages(Array(audioAssembler, speechToText))
val pipelineModel = pipeline.fit(audioDf)
val pipelineDF = pipelineModel.transform(audioDf)
import nlu
import requests
response = requests.get('https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/resources/en/audio/samples/wavs/ngm_12484_01067234848.wav')
with open('ngm_12484_01067234848.wav', 'wb') as f:
    f.write(response.content)
nlu.load("hi.speech2text.wav2vec_xlsr.v2_large_300m.by_saitomar").predict("ngm_12484_01067234848.wav")
Model Information
| Model Name: | asr_wav2vec2_large_xls_r_300m_hindi_kaggle | 
| Compatibility: | Spark NLP 4.2.0+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [audio_assembler] | 
| Output Labels: | [text] | 
| Language: | hi | 
| Size: | 1.2 GB |