Description
Pretrained VIT model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.image_classifier_vit_base_beans_demo_v5
is a English model originally trained by mrgiraffe.
Predicted Entities
lion
, tulip
, keyboard
, cra
, bus
, dolphin
, plate
, beaver
, skyscraper
, tiger
, bear
, trout
, porcupine
, sea
, shrew
, squirrel
, snail
, leopard
, palm_tree
, turtle
, orchid
, skunk
, hamster
, oak_tree
, lizard
, bridge
, sunflower
, pickup_truck
, orange
, man
, mouse
, cup
, whale
, seal
, television
, snake
, crocodile
, cockroach
, bed
, otter
, caterpillar
, woman
, rocket
, butterfly
, bicycle
, spider
, motorcycle
, lawn_mower
, wolf
, raccoon
, can
, cloud
, clock
, worm
, tank
, ray
, house
, girl
, dinosaur
, willow_tree
, maple_tree
, kangaroo
, cattle
, bee
, chair
, aquarium_fish
, shark
, baby
, tractor
, sweet_pepper
, plain
, lamp
, boy
, telephone
, mushroom
, couch
, apple
, wardrobe
, train
, pine_tree
, pear
, road
, mountain
, castle
, bowl
, lobster
, elephant
, beetle
, possum
, forest
, flatfish
, poppy
, fox
, streetcar
, chimpanzee
, bottle
, rose
, rabbit
, table
, camel
How to use
pipeline = PretrainedPipeline('pipeline_image_classifier_vit_base_beans_demo_v5', lang = 'en')
annotations = pipeline.transform(imageDF)
val pipeline = new PretrainedPipeline("pipeline_image_classifier_vit_base_beans_demo_v5", lang = "en")
val annotations = pipeline.transform(imageDF)
Model Information
Model Name: | pipeline_image_classifier_vit_base_beans_demo_v5 |
Type: | pipeline |
Compatibility: | Spark NLP 4.2.1+ |
License: | Open Source |
Edition: | Official |
Language: | en |
Size: | 322.2 MB |
Included Models
- ImageAssembler
- ViTForImageClassification