Description
Pretrained VIT model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.image_classifier_vit_base_patch16_224_finetuned_kvasirv2_colonoscopy
is a English model originally trained by mrm8488.
Predicted Entities
ulcerative-colitis
, normal-pylorus
, normal-cecum
, normal-z-line
, esophagitis
, dyed-lifted-polyps
, dyed-resection-margins
, polyps
How to use
pipeline = PretrainedPipeline('pipeline_image_classifier_vit_base_patch16_224_finetuned_kvasirv2_colonoscopy', lang = 'en')
annotations = pipeline.transform(imageDF)
val pipeline = new PretrainedPipeline("pipeline_image_classifier_vit_base_patch16_224_finetuned_kvasirv2_colonoscopy", lang = "en")
val annotations = pipeline.transform(imageDF)
Model Information
Model Name: | pipeline_image_classifier_vit_base_patch16_224_finetuned_kvasirv2_colonoscopy |
Type: | pipeline |
Compatibility: | Spark NLP 4.2.1+ |
License: | Open Source |
Edition: | Official |
Language: | en |
Size: | 321.9 MB |
Included Models
- ImageAssembler
- ViTForImageClassification