English pipeline_image_classifier_vit_base_patch16_224_finetuned_kvasirv2_colonoscopy ViTForImageClassification from mrm8488

Description

Pretrained VIT model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.image_classifier_vit_base_patch16_224_finetuned_kvasirv2_colonoscopy is a English model originally trained by mrm8488.

Predicted Entities

ulcerative-colitis, normal-pylorus, normal-cecum, normal-z-line, esophagitis, dyed-lifted-polyps, dyed-resection-margins, polyps

Download Copy S3 URI

How to use


    pipeline = PretrainedPipeline('pipeline_image_classifier_vit_base_patch16_224_finetuned_kvasirv2_colonoscopy', lang = 'en')
    annotations =  pipeline.transform(imageDF)
    

    val pipeline = new PretrainedPipeline("pipeline_image_classifier_vit_base_patch16_224_finetuned_kvasirv2_colonoscopy", lang = "en")
    val annotations = pipeline.transform(imageDF)
    

Model Information

Model Name: pipeline_image_classifier_vit_base_patch16_224_finetuned_kvasirv2_colonoscopy
Type: pipeline
Compatibility: Spark NLP 4.2.1+
License: Open Source
Edition: Official
Language: en
Size: 321.9 MB

Included Models

  • ImageAssembler
  • ViTForImageClassification