Description
Pretrained VIT model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.image_classifier_vit_gtsrb_model
is a English model originally trained by bazyl.
Predicted Entities
Children crossing
, Double curve
, Road work
, Yield
, Beware of ice/snow
, Speed limit (70km/h)
, Bicycles crossing
, Roundabout mandatory
, Speed limit (30km/h)
, Keep left
, Dangerous curve left
, No vehicles
, End of no passing
, Bumpy road
, Speed limit (50km/h)
, Turn left ahead
, Speed limit (20km/h)
, General caution
, Speed limit (100km/h)
, End speed + passing limits
, Go straight or right
, Dangerous curve right
, Speed limit (80km/h)
, Slippery road
, Turn right ahead
, No passing veh over 3.5 tons
, Speed limit (60km/h)
, Pedestrians
, Right-of-way at intersection
, Priority road
, End of speed limit (80km/h)
, Road narrows on the right
, No entry
, Stop
, Wild animals crossing
, Veh > 3.5 tons prohibited
, End no passing veh > 3.5 tons
, Go straight or left
, Speed limit (120km/h)
, Ahead only
, Keep right
, Traffic signals
, No passing
How to use
pipeline = PretrainedPipeline('pipeline_image_classifier_vit_gtsrb_model', lang = 'en')
annotations = pipeline.transform(imageDF)
val pipeline = new PretrainedPipeline("pipeline_image_classifier_vit_gtsrb_model", lang = "en")
val annotations = pipeline.transform(imageDF)
Model Information
Model Name: | pipeline_image_classifier_vit_gtsrb_model |
Type: | pipeline |
Compatibility: | Spark NLP 4.2.1+ |
License: | Open Source |
Edition: | Official |
Language: | en |
Size: | 322.0 MB |
Included Models
- ImageAssembler
- ViTForImageClassification