Description
Pretrained VIT model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.image_classifier_vit_mit_indoor_scenes
is a English model originally trained by vincentclaes.
Predicted Entities
airport_inside
, bowling
, buffet
, movietheater
, clothingstore
, inside_bus
, fastfood_restaurant
, operating_room
, corridor
, cloister
, stairscase
, auditorium
, meeting_room
, livingroom
, videostore
, bathroom
, inside_subway
, bedroom
, casino
, tv_studio
, classroom
, laboratorywet
, nursery
, office
, deli
, prisoncell
, dentaloffice
, restaurant_kitchen
, studiomusic
, locker_room
, restaurant
, laundromat
, dining_room
, subway
, gameroom
, museum
, mall
, garage
, elevator
, jewelleryshop
, kindergarden
, toystore
, concert_hall
, artstudio
, kitchen
, florist
, waitingroom
, grocerystore
, library
, bar
, computerroom
, trainstation
, lobby
, church_inside
, pantry
, closet
, children_room
, hairsalon
, shoeshop
, greenhouse
, bookstore
, bakery
, poolinside
, warehouse
, winecellar
, hospitalroom
, gym
How to use
pipeline = PretrainedPipeline('pipeline_image_classifier_vit_mit_indoor_scenes', lang = 'en')
annotations = pipeline.transform(imageDF)
val pipeline = new PretrainedPipeline("pipeline_image_classifier_vit_mit_indoor_scenes", lang = "en")
val annotations = pipeline.transform(imageDF)
Model Information
Model Name: | pipeline_image_classifier_vit_mit_indoor_scenes |
Type: | pipeline |
Compatibility: | Spark NLP 4.2.1+ |
License: | Open Source |
Edition: | Official |
Language: | en |
Size: | 322.1 MB |
Included Models
- ImageAssembler
- ViTForImageClassification