Description
Word Embeddings lookup annotator that maps tokens to vectors. In the Skip-gram model, the distributed representation of the input word is used to predict the context.
How to use
model = WordEmbeddingsModel.pretrained("word2vec_skipgram_legal_d50_uncased","es")\
.setInputCols(["document","token"])\
.setOutputCol("word_embeddings")
val model = WordEmbeddingsModel.pretrained("word2vec_skipgram_legal_d50_uncased","es")
.setInputCols("document","token")
.setOutputCol("word_embeddings")
import nlu
nlu.load("es.embed.legal.skipgram.uncased_d50").predict("""Put your text here.""")
Model Information
Model Name: | word2vec_skipgram_legal_d50_uncased |
Type: | embeddings |
Compatibility: | Spark NLP 4.2.1+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [embeddings] |
Language: | es |
Size: | 172.2 MB |
Case sensitive: | false |
Dimension: | 100 |
References
https://zenodo.org/record/5036147#.Y3Op0XZBxD-