Description
Pretrained Basic NLP pipeline, by TEMU-BSC for PlanTL-GOB-ES, with Tokenization, lemmatization, NER, embeddings and Normalization, using roberta_base_bne transformer.
How to use
import sparknlp spark = sparknlp.start()
from sparknlp.annotator import * from sparknlp.base import * pipeline = PretrainedPipeline(“pipeline_bsc_roberta_base_bne”, “es”, “@cayorodriguez”) from sparknlp.base import LightPipeline
light_model = LightPipeline(pipeline) text = “La Reserva Federal de el Gobierno de EE UU aprueba una de las mayorores subidas de tipos de interés desde 1994.” light_result = light_model.annotate(text)
result = pipeline.annotate(““Veo al hombre de los Estados Unidos con el telescopio””)
import sparknlp
spark = sparknlp.start()
from sparknlp.annotator import *
from sparknlp.base import *
pipeline = PretrainedPipeline("pipeline_bsc_roberta_base_bne", "es", "@cayorodriguez")
from sparknlp.base import LightPipeline
light_model = LightPipeline(pipeline)
text = "La Reserva Federal de el Gobierno de EE UU aprueba una de las mayorores subidas de tipos de interés desde 1994."
light_result = light_model.annotate(text)
result = pipeline.annotate(""Veo al hombre de los Estados Unidos con el telescopio"")
Model Information
| Model Name: | pipeline_bsc_roberta_base_bne | 
| Type: | pipeline | 
| Compatibility: | Spark NLP 4.0.0+ | 
| License: | Open Source | 
| Edition: | Community | 
| Language: | es | 
| Size: | 2.0 GB | 
| Dependencies: | roberta_base_bne | 
Included Models
- DocumentAssembler
 - SentenceDetectorDLModel
 - TokenizerModel
 - NormalizerModel
 - StopWordsCleaner
 - RoBertaEmbeddings
 - SentenceEmbeddings
 - EmbeddingsFinisher
 - LemmatizerModel
 - RoBertaForTokenClassification
 - RoBertaForTokenClassification
 - NerConverter