Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-german-finetuned-ler
is a German model originally trained by mrm8488
.
Predicted Entities
EUN
, LIT
, RR
, INN
, RS
, PER
, VO
, UN
, MRK
, AN
, LD
, STR
, GRT
, ORG
, GS
, VT
, LDS
, ST
, VS
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_base_german_finetuned_ler","de") \
.setInputCols(["document", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, tokenClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_base_german_finetuned_ler","de")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("de.ner.bert.base_finetuned").predict("""PUT YOUR STRING HERE""")
Model Information
Model Name: | bert_token_classifier_base_german_finetuned_ler |
Compatibility: | Spark NLP 4.2.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | de |
Size: | 407.5 MB |
Case sensitive: | true |
Max sentence length: | 256 |
References
- https://huggingface.co/mrm8488/bert-base-german-finetuned-ler
- https://github.com/elenanereiss/Legal-Entity-Recognition
- https://github.com/elenanereiss/Legal-Entity-Recognition
- http://www.rechtsprechung-im-internet.de
- https://colab.research.google.com/drive/156Qrd7NsUHwA3nmQ6gXdZY0NzOvqk9AT?usp=sharing
- https://github.com/elenanereiss/Legal-Entity-Recognition/blob/master/docs/Annotationsrichtlinien.pdf
- https://twitter.com/mrm8488