Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-german-ler is a German model originally trained by elenanereiss.
Predicted Entities
``, EUN, LIT, RR, INN, RS, PER, VO, UN, MRK, AN, LD, STR, GRT, ORG, GS, VT, LDS, ST, VS
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_german_ler","de") \
.setInputCols(["document", "token"]) \
.setOutputCol("ner")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, tokenClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_german_ler","de")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("de.ner.bert.by_elenanereiss").predict("""PUT YOUR STRING HERE""")
Model Information
| Model Name: | bert_token_classifier_german_ler |
| Compatibility: | Spark NLP 4.2.4+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [class] |
| Language: | de |
| Size: | 407.5 MB |
| Case sensitive: | true |
| Max sentence length: | 256 |
References
- https://huggingface.co/elenanereiss/bert-german-ler
- https://github.com/elenanereiss/bert-legal-ner
- https://paperswithcode.com/sota?task=Token+Classification&dataset=elenanereiss%2Fgerman-ler