English BertForTokenClassification Cased model (from Shenzy2)

Description

Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. NER4DesignTutor is a English model originally trained by Shenzy2.

Predicted Entities

design_concept, ui_element

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_ner4designtutor","en") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("ner")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, tokenClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val tokenClassifier = BertForTokenClassification.pretrained("bert_token_classifier_ner4designtutor","en")
    .setInputCols(Array("document", "token"))
    .setOutputCol("ner")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.ner.bert.designtutor.by_shenzy2").predict("""PUT YOUR STRING HERE""")

Model Information

Model Name: bert_token_classifier_ner4designtutor
Compatibility: Spark NLP 4.2.4+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [class]
Language: en
Size: 404.2 MB
Case sensitive: true
Max sentence length: 256

References

  • https://huggingface.co/Shenzy2/NER4DesignTutor