Description
Pretrained BertForMaskedLM model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-dutch-cased
is a Dutch model originally trained by GroNLP
.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
bert_loaded = BertEmbeddings.pretrained("bert_embeddings_base_dutch_cased","nl") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings") \
.setCaseSensitive(True)
pipeline = Pipeline(stages=[documentAssembler, tokenizer, bert_loaded])
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val bert_loaded = BertEmbeddings.pretrained("bert_embeddings_base_dutch_cased","nl")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
.setCaseSensitive(True)
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, bert_loaded))
val data = Seq("I love Spark NLP").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("nl.embed.bert.cased_base").predict("""I love Spark NLP""")
Model Information
Model Name: | bert_embeddings_base_dutch_cased |
Compatibility: | Spark NLP 4.2.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [bert] |
Language: | nl |
Size: | 409.5 MB |
Case sensitive: | true |
References
- https://huggingface.co/GroNLP/bert-base-dutch-cased
- https://www.semanticscholar.org/author/Wietse-de-Vries/144611157
- https://www.semanticscholar.org/author/Andreas-van-Cranenburgh/2791585
- https://www.semanticscholar.org/author/Arianna-Bisazza/3242253
- https://www.semanticscholar.org/author/Tommaso-Caselli/1864635
- https://www.semanticscholar.org/author/Gertjan-van-Noord/143715131
- https://www.semanticscholar.org/author/M.-Nissim/2742475
- https://arxiv.org/abs/1912.09582
- https://github.com/wietsedv/bertje
- https://www.semanticscholar.org/paper/BERTje%3A-A-Dutch-BERT-Model-Vries-Cranenburgh/a4d5e425cac0bf84c86c0c9f720b6339d6288ffa
- https://www.clips.uantwerpen.be/conll2002/ner/
- https://ivdnt.org/downloads/taalmaterialen/tstc-sonar-corpus
- https://github.com/google-research/bert/blob/master/multilingual.md
- http://textdata.nl
- https://github.com/iPieter/RobBERT
- https://universaldependencies.org/treebanks/nl_lassysmall/index.html
- https://github.com/google-research/bert/blob/master/multilingual.md
- http://textdata.nl
- https://github.com/iPieter/RobBERT