Description
Pretrained BertForMaskedLM model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-german-uncased
is a German model originally trained by dbmdz
.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
bert_loaded = BertEmbeddings.pretrained("bert_embeddings_base_german_uncased","de") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings") \
.setCaseSensitive(True)
pipeline = Pipeline(stages=[documentAssembler, tokenizer, bert_loaded])
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val bert_loaded = BertEmbeddings.pretrained("bert_embeddings_base_german_uncased","de")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
.setCaseSensitive(True)
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, bert_loaded))
val data = Seq("I love Spark NLP").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("de.embed.bert.uncased_base").predict("""I love Spark NLP""")
Model Information
Model Name: | bert_embeddings_base_german_uncased |
Compatibility: | Spark NLP 4.2.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [bert] |
Language: | de |
Size: | 412.7 MB |
Case sensitive: | true |
References
- https://huggingface.co/dbmdz/bert-base-german-uncased
- https://deepset.ai/german-bert
- https://deepset.ai/
- https://spacy.io/
- https://github.com/allenai/scibert
- https://github.com/stefan-it/fine-tuned-berts-seq
- https://github.com/dbmdz/berts/issues/new