Description
Pretrained BertForMaskedLM model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-base-spanish-wwm-cased
is a Spanish model originally trained by dccuchile
.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
bert_loaded = BertEmbeddings.pretrained("bert_embeddings_base_spanish_wwm_cased","es") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings") \
.setCaseSensitive(True)
pipeline = Pipeline(stages=[documentAssembler, tokenizer, bert_loaded])
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val bert_loaded = BertEmbeddings.pretrained("bert_embeddings_base_spanish_wwm_cased","es")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
.setCaseSensitive(True)
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, bert_loaded))
val data = Seq("I love Spark NLP").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("es.embed.bert.cased_base.by_dccuchile").predict("""I love Spark NLP""")
Model Information
Model Name: | bert_embeddings_base_spanish_wwm_cased |
Compatibility: | Spark NLP 4.2.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [bert] |
Language: | es |
Size: | 412.2 MB |
Case sensitive: | true |
References
- https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased
- https://github.com/google-research/bert
- https://github.com/josecannete/spanish-corpora
- https://github.com/google-research/bert/blob/master/multilingual.md
- https://users.dcc.uchile.cl/~jperez/beto/uncased_2M/tensorflow_weights.tar.gz
- https://users.dcc.uchile.cl/~jperez/beto/uncased_2M/pytorch_weights.tar.gz
- https://users.dcc.uchile.cl/~jperez/beto/cased_2M/tensorflow_weights.tar.gz
- https://users.dcc.uchile.cl/~jperez/beto/cased_2M/pytorch_weights.tar.gz
- https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1827
- https://www.kaggle.com/nltkdata/conll-corpora
- https://github.com/gchaperon/beto-benchmarks/blob/master/conll2002/dev_results_beto-cased_conll2002.txt
- https://github.com/facebookresearch/MLDoc
- https://github.com/gchaperon/beto-benchmarks/blob/master/MLDoc/dev_results_beto-cased_mldoc.txt
- https://github.com/gchaperon/beto-benchmarks/blob/master/MLDoc/dev_results_beto-uncased_mldoc.txt
- https://github.com/google-research-datasets/paws/tree/master/pawsx
- https://github.com/facebookresearch/XNLI
- https://colab.research.google.com/drive/1uRwg4UmPgYIqGYY4gW_Nsw9782GFJbPt
- https://www.adere.so/
- https://imfd.cl/en/
- https://www.tensorflow.org/tfrc
- https://users.dcc.uchile.cl/~jperez/papers/pml4dc2020.pdf
- https://github.com/google-research/bert/blob/master/multilingual.md
- https://arxiv.org/pdf/1904.09077.pdf
- https://arxiv.org/pdf/1906.01502.pdf
- https://arxiv.org/abs/1812.10464
- https://arxiv.org/pdf/1901.07291.pdf
- https://arxiv.org/pdf/1904.02099.pdf
- https://arxiv.org/pdf/1906.01569.pdf
- https://arxiv.org/abs/1908.11828