Description
Pretrained BertForMaskedLM model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. chinese_roberta_L-10_H-256
is a Chinese model originally trained by uer
.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
bert_loaded = BertEmbeddings.pretrained("bert_embeddings_chinese_roberta_l_10_h_256","zh") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings") \
.setCaseSensitive(True)
pipeline = Pipeline(stages=[documentAssembler, tokenizer, bert_loaded])
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val bert_loaded = BertEmbeddings.pretrained("bert_embeddings_chinese_roberta_l_10_h_256","zh")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
.setCaseSensitive(True)
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, bert_loaded))
val data = Seq("I love Spark NLP").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("zh.embed.bert.10l_256d_256d").predict("""I love Spark NLP""")
Model Information
Model Name: | bert_embeddings_chinese_roberta_l_10_h_256 |
Compatibility: | Spark NLP 4.2.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [bert] |
Language: | zh |
Size: | 51.2 MB |
Case sensitive: | true |
References
- https://huggingface.co/uer/chinese_roberta_L-10_H-256
- https://github.com/dbiir/UER-py/
- https://arxiv.org/abs/1909.05658
- https://arxiv.org/abs/1908.08962
- https://github.com/dbiir/UER-py/wiki/Modelzoo
- https://github.com/CLUEbenchmark/CLUECorpus2020/
- https://github.com/dbiir/UER-py/
- https://cloud.tencent.com/