Chinese BertForMaskedLM Cased model (from uer)

Description

Pretrained BertForMaskedLM model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. chinese_roberta_L-10_H-256 is a Chinese model originally trained by uer.

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

bert_loaded = BertEmbeddings.pretrained("bert_embeddings_chinese_roberta_l_10_h_256","zh") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("embeddings") \
    .setCaseSensitive(True)

pipeline = Pipeline(stages=[documentAssembler, tokenizer, bert_loaded])

data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val bert_loaded = BertEmbeddings.pretrained("bert_embeddings_chinese_roberta_l_10_h_256","zh")
    .setInputCols(Array("document", "token"))
    .setOutputCol("embeddings")
    .setCaseSensitive(True)

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, bert_loaded))

val data = Seq("I love Spark NLP").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("zh.embed.bert.10l_256d_256d").predict("""I love Spark NLP""")

Model Information

Model Name: bert_embeddings_chinese_roberta_l_10_h_256
Compatibility: Spark NLP 4.2.4+
License: Open Source
Edition: Official
Input Labels: [sentence, token]
Output Labels: [bert]
Language: zh
Size: 51.2 MB
Case sensitive: true

References

  • https://huggingface.co/uer/chinese_roberta_L-10_H-256
  • https://github.com/dbiir/UER-py/
  • https://arxiv.org/abs/1909.05658
  • https://arxiv.org/abs/1908.08962
  • https://github.com/dbiir/UER-py/wiki/Modelzoo
  • https://github.com/CLUEbenchmark/CLUECorpus2020/
  • https://github.com/dbiir/UER-py/
  • https://cloud.tencent.com/