Description
Pretrained Financial BERT Sentence Embeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. sbert-chinese-qmc-finance-v1-distill
is a Chinese Financial model originally trained upon Financial Problem Matching.
How to use
sentence_embeddings = BertSentenceEmbeddings.pretrained("sbert_chinese_qmc_finance_v1_distill", "zh")\
.setInputCols(["sentence"])\
.setOutputCol("sbert_embeddings")
val sentence_embeddings = BertSentenceEmbeddings.pretrained("sbert_chinese_qmc_finance_v1_distill", "zh")
.setInputCols("sentence")
.setOutputCol("bert_sentence"))
import nlu
nlu.load("zh.embed_sentence.bert.distilled").predict("""Put your text here.""")
Model Information
Model Name: | sbert_chinese_qmc_finance_v1_distill |
Compatibility: | Spark NLP 4.2.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence] |
Output Labels: | [bert_sentence] |
Language: | zh |
Size: | 171.1 MB |
Case sensitive: | true |
References
https://huggingface.co/DMetaSoul/sbert-chinese-qmc-finance-v1-distill