Description
Pretrained Financial BERT Sentence Embeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. setfit-finetuned-financial-text-classification
is a English Financial model which is maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
How to use
sentence_embeddings = BertSentenceEmbeddings.pretrained("sbert_setfit_finetuned_financial_text_classification", "en")\
.setInputCols(["sentence"])\
.setOutputCol("sbert_embeddings")
val sentence_embeddings = BertSentenceEmbeddings.pretrained("sbert_setfit_finetuned_financial_text_classification", "en")
.setInputCols("sentence")
.setOutputCol("bert_sentence"))
import nlu
nlu.load("en.embed_sentence.bert.finetuned").predict("""Put your text here.""")
Model Information
Model Name: | sbert_setfit_finetuned_financial_text_classification |
Compatibility: | Spark NLP 4.2.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence] |
Output Labels: | [bert_sentence] |
Language: | en |
Size: | 409.0 MB |
Case sensitive: | true |
References
https://huggingface.co/nickmuchi/setfit-finetuned-financial-text-classification