Description
Pretrained RobertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. autonlp-txc-17923124
is a English model originally trained by emekaboris
.
Predicted Entities
15.0
, 24.0
, 10.0
, 8.0
, 4.0
, 17.0
, 3.0
, 23.0
, 5.0
, 6.0
, 1.0
, 21.0
, 18.0
, 19.0
, 14.0
, 16.0
, 20.0
, 7.0
, 13.0
, 11.0
, 12.0
, 9.0
, 22.0
, 2.0
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
roberta_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_autonlp_txc_17923124","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, roberta_classifier])
data = spark.createDataFrame([["I love you!"], ["I feel lucky to be here."]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols("text")
.setOutputCols("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val roberta_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_autonlp_txc_17923124","en")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, roberta_classifier))
val data = Seq("I love you!").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.classify.roberta.by_emekaboris").predict("""I feel lucky to be here.""")
Model Information
Model Name: | roberta_classifier_autonlp_txc_17923124 |
Compatibility: | Spark NLP 4.2.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | en |
Size: | 427.0 MB |
Case sensitive: | true |
Max sentence length: | 128 |
References
- https://huggingface.co/emekaboris/autonlp-txc-17923124