Description
Pretrained RobertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. autotrain-citizen_nlu_bn-1370652766 is a Bangla model originally trained by neuralspace.
Predicted Entities
ReportingMissingPets, EligibilityForBloodDonationCovidGap, ReportingPropertyTakeOver, IntentForBloodReceivalAppointment, EligibilityForBloodDonationSTD, InquiryForDoctorConsultation, InquiryOfCovidSymptoms, InquiryForVaccineCount, InquiryForCovidPrevention, InquiryForVaccinationRequirements, EligibilityForBloodDonationForPregnantWomen, ReportingCyberCrime, ReportingHitAndRun, ReportingTresspassing, InquiryofBloodDonationRequirements, ReportingMurder, ReportingVehicleAccident, ReportingMissingPerson, EligibilityForBloodDonationAgeLimit, ReportingAnimalPoaching, InquiryOfEmergencyContact, InquiryForQuarantinePeriod, ContactRealPerson, IntentForBloodDonationAppointment, ReportingMissingVehicle, InquiryForCovidRecentCasesCount, InquiryOfContact, StatusOfFIR, InquiryofVaccinationAgeLimit, InquiryForCovidTotalCasesCount, EligibilityForBloodDonationGap, InquiryofPostBloodDonationEffects, InquiryofPostBloodReceivalCareSchemes, EligibilityForBloodReceiversBloodGroup, EligitbilityForVaccine, InquiryOfLockdownDetails, ReportingSexualAssault, InquiryForVaccineCost, InquiryForCovidDeathCount, ReportingDrugConsumption, ReportingDrugTrafficing, InquiryofPostBloodDonationCertificate, ReportingDowry, ReportingChildAbuse, ReportingAnimalAbuse, InquiryofPostBloodReceivalEffects, Eligibility For BloodDonationWithComorbidities, InquiryOfTiming, InquiryForCovidActiveCasesCount, InquiryOfLocation, InquiryofPostBloodDonationCareSchemes, ReportingTheft, InquiryForTravelRestrictions, ReportingDomesticViolence, InquiryofBloodReceivalRequirements
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
roberta_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_autotrain_citizen_nlu_bn_1370652766","bn") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, roberta_classifier])
data = spark.createDataFrame([["I love you!"], ["I feel lucky to be here."]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols("text")
.setOutputCols("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val roberta_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_autotrain_citizen_nlu_bn_1370652766","bn")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, roberta_classifier))
val data = Seq("I love you!").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("bn.classify.roberta").predict("""I feel lucky to be here.""")
Model Information
| Model Name: | roberta_classifier_autotrain_citizen_nlu_bn_1370652766 |
| Compatibility: | Spark NLP 4.2.4+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [class] |
| Language: | bn |
| Size: | 312.2 MB |
| Case sensitive: | true |
| Max sentence length: | 128 |
References
- https://huggingface.co/neuralspace/autotrain-citizen_nlu_bn-1370652766