Description
Pretrained RobertaForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. autotrain-citizen_nlu_bn-1370652766
is a Bangla model originally trained by neuralspace
.
Predicted Entities
ReportingMissingPets
, EligibilityForBloodDonationCovidGap
, ReportingPropertyTakeOver
, IntentForBloodReceivalAppointment
, EligibilityForBloodDonationSTD
, InquiryForDoctorConsultation
, InquiryOfCovidSymptoms
, InquiryForVaccineCount
, InquiryForCovidPrevention
, InquiryForVaccinationRequirements
, EligibilityForBloodDonationForPregnantWomen
, ReportingCyberCrime
, ReportingHitAndRun
, ReportingTresspassing
, InquiryofBloodDonationRequirements
, ReportingMurder
, ReportingVehicleAccident
, ReportingMissingPerson
, EligibilityForBloodDonationAgeLimit
, ReportingAnimalPoaching
, InquiryOfEmergencyContact
, InquiryForQuarantinePeriod
, ContactRealPerson
, IntentForBloodDonationAppointment
, ReportingMissingVehicle
, InquiryForCovidRecentCasesCount
, InquiryOfContact
, StatusOfFIR
, InquiryofVaccinationAgeLimit
, InquiryForCovidTotalCasesCount
, EligibilityForBloodDonationGap
, InquiryofPostBloodDonationEffects
, InquiryofPostBloodReceivalCareSchemes
, EligibilityForBloodReceiversBloodGroup
, EligitbilityForVaccine
, InquiryOfLockdownDetails
, ReportingSexualAssault
, InquiryForVaccineCost
, InquiryForCovidDeathCount
, ReportingDrugConsumption
, ReportingDrugTrafficing
, InquiryofPostBloodDonationCertificate
, ReportingDowry
, ReportingChildAbuse
, ReportingAnimalAbuse
, InquiryofPostBloodReceivalEffects
, Eligibility For BloodDonationWithComorbidities
, InquiryOfTiming
, InquiryForCovidActiveCasesCount
, InquiryOfLocation
, InquiryofPostBloodDonationCareSchemes
, ReportingTheft
, InquiryForTravelRestrictions
, ReportingDomesticViolence
, InquiryofBloodReceivalRequirements
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
roberta_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_autotrain_citizen_nlu_bn_1370652766","bn") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, roberta_classifier])
data = spark.createDataFrame([["I love you!"], ["I feel lucky to be here."]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols("text")
.setOutputCols("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val roberta_classifier = RoBertaForSequenceClassification.pretrained("roberta_classifier_autotrain_citizen_nlu_bn_1370652766","bn")
.setInputCols(Array("document", "token"))
.setOutputCol("class")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, roberta_classifier))
val data = Seq("I love you!").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("bn.classify.roberta").predict("""I feel lucky to be here.""")
Model Information
Model Name: | roberta_classifier_autotrain_citizen_nlu_bn_1370652766 |
Compatibility: | Spark NLP 4.2.4+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [class] |
Language: | bn |
Size: | 312.2 MB |
Case sensitive: | true |
Max sentence length: | 128 |
References
- https://huggingface.co/neuralspace/autotrain-citizen_nlu_bn-1370652766