English Legal Word2Vec Embeddings (Lemmatized , NNP)

Description

Legal Word Embeddings lookup annotator that maps tokens to vectors. Trained on legal text after lemmatization, also replacing the text with NNP.

Download Copy S3 URI

How to use

 
model = WordEmbeddingsModel.pretrained("word2vec_osf_replaced_lemmatized_legal","en")\
	            .setInputCols(["document","token"])\
	            .setOutputCol("word_embeddings")


val model = WordEmbeddingsModel.pretrained("word2vec_osf_replaced_lemmatized_legal","en")
	                .setInputCols("document","token")
	                .setOutputCol("word_embeddings")

import nlu
nlu.load("en.embed.legal.osf_replaced_lemmatized_legal").predict("""Put your text here.""")

Model Information

Model Name: word2vec_osf_replaced_lemmatized_legal
Type: embeddings
Compatibility: Spark NLP 4.2.5+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [embeddings]
Language: en
Size: 39.8 MB
Case sensitive: false
Dimension: 100

References

https://osf.io/