Description
Legal Word Embeddings lookup annotator that maps tokens to vectors. Trained on legal text after lemmatization, also replacing the text with NNP.
How to use
model = WordEmbeddingsModel.pretrained("word2vec_osf_replaced_lemmatized_legal","en")\
.setInputCols(["document","token"])\
.setOutputCol("word_embeddings")
val model = WordEmbeddingsModel.pretrained("word2vec_osf_replaced_lemmatized_legal","en")
.setInputCols("document","token")
.setOutputCol("word_embeddings")
import nlu
nlu.load("en.embed.legal.osf_replaced_lemmatized_legal").predict("""Put your text here.""")
Model Information
Model Name: | word2vec_osf_replaced_lemmatized_legal |
Type: | embeddings |
Compatibility: | Spark NLP 4.2.5+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [embeddings] |
Language: | en |
Size: | 39.8 MB |
Case sensitive: | false |
Dimension: | 100 |
References
https://osf.io/