Description
Pretrained BERT Embedding model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. Legal-heBERT is a Hebrew model originally trained by avichr.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = BertEmbeddings.pretrained("bert_embeddings_Legal_heBERT","he") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["אני אוהב את Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | bert_embeddings_Legal_heBERT |
| Compatibility: | Spark NLP 4.2.7+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [sentence] |
| Output Labels: | [bert_sentence] |
| Language: | he |
| Size: | 465.2 MB |
| Case sensitive: | true |
| Max sentence length: | 128 |
References
- https://huggingface.co/avichr/Legal-heBERT
- https://github.com/avichaychriqui/HeBERT
- https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4147127
- https://arxiv.org/abs/1911.03090
- https://arxiv.org/abs/2010.02559