Description
Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. t5-v1_1-small
is a English model originally trained by google
.
How to use
documentAssembler = DocumentAssembler() \
.setInputCols("text") \
.setOutputCols("document")
t5 = T5Transformer.pretrained("t5_v1_1_small","en") \
.setInputCols("document") \
.setOutputCol("answers")
pipeline = Pipeline(stages=[documentAssembler, t5])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols("text")
.setOutputCols("document")
val t5 = T5Transformer.pretrained("t5_v1_1_small","en")
.setInputCols("document")
.setOutputCol("answers")
val pipeline = new Pipeline().setStages(Array(documentAssembler, t5))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | t5_v1_1_small |
Compatibility: | Spark NLP 4.3.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [documents] |
Output Labels: | [t5] |
Language: | en |
Size: | 179.4 MB |
References
- https://huggingface.co/google/t5-v1_1-small
- https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html
- https://github.com/google-research/text-to-text-transfer-transformer/blob/master/released_checkpoints.md#t511
- https://arxiv.org/abs/2002.05202
- https://arxiv.org/pdf/1910.10683.pdf
- https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67