Description
Pretrained T5ForConditionalGeneration model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. vit5-base-vietnews-summarization
is a Vietnamese model originally trained by VietAI
.
How to use
documentAssembler = DocumentAssembler() \
.setInputCols("text") \
.setOutputCols("document")
t5 = T5Transformer.pretrained("t5_vit5_base_vietnews_summarization","vi") \
.setInputCols("document") \
.setOutputCol("answers")
pipeline = Pipeline(stages=[documentAssembler, t5])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCols("text")
.setOutputCols("document")
val t5 = T5Transformer.pretrained("t5_vit5_base_vietnews_summarization","vi")
.setInputCols("document")
.setOutputCol("answers")
val pipeline = new Pipeline().setStages(Array(documentAssembler, t5))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | t5_vit5_base_vietnews_summarization |
Compatibility: | Spark NLP 4.3.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [documents] |
Output Labels: | [t5] |
Language: | vi |
Size: | 485.0 MB |
References
- https://huggingface.co/VietAI/vit5-base-vietnews-summarization
- https://paperswithcode.com/sota/abstractive-text-summarization-on-vietnews?p=vit5-pretrained-text-to-text-transformer-for
- https://github.com/vietai/ViT5
- https://github.com/vietai/ViT5/blob/main/eval/Eval_vietnews_sum.ipynb