Description
Pretrained DebertaV2ForMaskedLM model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece
is a Chinese model originally trained by IDEA-CCNL
.
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
embeddings = DeBertaEmbeddings.pretrained("deberta_embeddings_erlangshen_v2_chinese_sentencepiece","zh") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings") \
.setCaseSensitive(True)
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["I love Spark-NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val embeddings = DeBertaEmbeddings.pretrained("deberta_embeddings_erlangshen_v2_chinese_sentencepiece","zh")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
.setCaseSensitive(True)
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("I love Spark-NLP").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | deberta_embeddings_erlangshen_v2_chinese_sentencepiece |
Compatibility: | Spark NLP 4.3.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token] |
Output Labels: | [embeddings] |
Language: | zh |
Size: | 445.8 MB |
Case sensitive: | false |
References
https://huggingface.co/IDEA-CCNL/Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece