Mongolian RobertaForTokenClassification Base Cased model (from onon214)

Description

Pretrained RobertaForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. roberta-base-ner-demo is a Mongolian model originally trained by onon214.

Predicted Entities

MISC, LOC, PER, ORG

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

tokenClassifier = RobertaForTokenClassification.pretrained("roberta_token_classifier_base_ner_demo","mn") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("ner")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, tokenClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val tokenClassifier = RobertaForTokenClassification.pretrained("roberta_token_classifier_base_ner_demo","mn")
    .setInputCols(Array("document", "token"))
    .setOutputCol("ner")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)

Model Information

Model Name: roberta_token_classifier_base_ner_demo
Compatibility: Spark NLP 4.3.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [ner]
Language: mn
Size: 466.3 MB
Case sensitive: true
Max sentence length: 128

References

  • https://huggingface.co/onon214/roberta-base-ner-demo