English RobertaForTokenClassification Cased model (from Jean-Baptiste)

Description

Pretrained RobertaForTokenClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. roberta-ticker is a English model originally trained by Jean-Baptiste.

Predicted Entities

TICKER

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

tokenClassifier = RobertaForTokenClassification.pretrained("roberta_token_classifier_ticker","en") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("ner")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, tokenClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val tokenClassifier = RobertaForTokenClassification.pretrained("roberta_token_classifier_ticker","en")
    .setInputCols(Array("document", "token"))
    .setOutputCol("ner")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, tokenClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.ner.stocks_ticker").predict("""text|||"document|||"document|||"token|||"roberta_token_classifier_ticker|||"en|||"document|||"token|||"ner|||"PUT YOUR STRING HERE|||"text""")

Model Information

Model Name: roberta_token_classifier_ticker
Compatibility: Spark NLP 4.3.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [ner]
Language: en
Size: 465.3 MB
Case sensitive: true
Max sentence length: 128

References

  • https://huggingface.co/Jean-Baptiste/roberta-ticker
  • https://www.kaggle.com/omermetinn/tweets-about-the-top-companies-from-2015-to-2020