Description
Pretrained DebertaEmbeddings model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. deberta-v3-base-lm is a English model originally trained by iewaij.
How to use
documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")
tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")
embeddings = DeBertaEmbeddings.pretrained("deberta_embeddings_v3_base_lm","en") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("embeddings") \
    .setCaseSensitive(True)
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])
data = spark.createDataFrame([["I love Spark NLP"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")
val embeddings = DeBertaEmbeddings.pretrained("deberta_embeddings_v3_base_lm","en")
    .setInputCols(Array("document", "token"))
    .setOutputCol("embeddings")
    .setCaseSensitive(true)
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))
val data = Seq("I love Spark NLP").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | deberta_embeddings_v3_base_lm | 
| Compatibility: | Spark NLP 4.3.1+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [sentence, token] | 
| Output Labels: | [embeddings] | 
| Language: | en | 
| Size: | 691.5 MB | 
| Case sensitive: | false | 
References
https://huggingface.co/iewaij/deberta-v3-base-lm