English Bert Embeddings model (from EslamAhmed)

Description

Pretrained DistilBertForMaskedLM model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. google_Job_data_tuned_trial_8_11-2-2022 is a English model originally trained by EslamAhmed.

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

embeddings = DistilBertEmbeddings.pretrained("distilbert_embeddings_google_Job_data_tuned_trial_8","en") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("embeddings") \
    .setCaseSensitive(True)

pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])

data = spark.createDataFrame([["I love Spark-NLP"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val embeddings = DistilBertEmbeddings.pretrained("distilbert_embeddings_google_Job_data_tuned_trial_8","en")
    .setInputCols(Array("document", "token"))
    .setOutputCol("embeddings")
    .setCaseSensitive(True)

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))

val data = Seq("I love Spark-NLP").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)

Model Information

Model Name: distilbert_embeddings_google_Job_data_tuned_trial_8
Compatibility: Spark NLP 4.3.1+
License: Open Source
Edition: Official
Input Labels: [sentence, token]
Output Labels: [embeddings]
Language: en
Size: 403.0 MB
Case sensitive: false

References

https://huggingface.co/EslamAhmed/google_Job_data_tuned_trial_8_11-2-2022