Description
Pretrained Legal BERT Sentence Embedding model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. multi-qa-mpnet-base-dot-v1_legal_finetune
is a English model originally trained by oliviamga2
.
How to use
sent_embeddings = BertSentenceEmbeddings.pretrained("sent_bert_multi_qa_mpnet_base_dot_v1_legal_finetune", "en") \
.setInputCols("sentence") \
.setOutputCol("bert_sentence")
nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, sent_embeddings ])
result = pipeline.fit(data).transform(data)
vval sent_embeddings = BertSentenceEmbeddings.pretrained("sent_bert_multi_qa_mpnet_base_dot_v1_legal_finetune", "en")
.setInputCols("sentence")
.setOutputCol("bert_sentence")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, sent_embeddings ))
Model Information
Model Name: | sent_bert_multi_qa_mpnet_base_dot_v1_legal_finetune |
Compatibility: | Spark NLP 4.3.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence] |
Output Labels: | [bert_sentence] |
Language: | en |
Size: | 409.0 MB |
Case sensitive: | true |
References
- https://huggingface.co/oliviamga2/multi-qa-mpnet-base-dot-v1_legal_finetune
- https://www.SBERT.net
- https://seb.sbert.net?model_name=%7BMODEL_NAME%7D