Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. BERT-Banking77 is a English model originally trained by philschmid.
Predicted Entities
get_disposable_virtual_card, declined_card_payment, fiat_currency_support, apple_pay_or_google_pay, atm_support, failed_transfer, Refund_not_showing_up, wrong_amount_of_cash_received, getting_virtual_card, verify_my_identity, top_up_by_cash_or_cheque, top_up_by_bank_transfer_charge, balance_not_updated_after_cheque_or_cash_deposit, visa_or_mastercard, cash_withdrawal_charge, pending_top_up, country_support, contactless_not_working, transfer_not_received_by_recipient, card_arrival, top_up_failed, balance_not_updated_after_bank_transfer, topping_up_by_card, card_acceptance, order_physical_card, pending_card_payment, exchange_charge, extra_charge_on_statement, verify_top_up, card_swallowed, card_delivery_estimate, top_up_by_card_charge, exchange_rate, activate_my_card, card_payment_wrong_exchange_rate, passcode_forgotten, supported_cards_and_currencies, why_verify_identity, verify_source_of_funds, card_payment_fee_charged, change_pin, top_up_reverted, virtual_card_not_working, declined_cash_withdrawal, reverted_card_payment?, transfer_fee_charged, card_payment_not_recognised, card_not_working, beneficiary_not_allowed, exchange_via_app, automatic_top_up, lost_or_stolen_card, card_about_to_expire, pin_blocked, card_linking, direct_debit_payment_not_recognised, compromised_card, request_refund, wrong_exchange_rate_for_cash_withdrawal, transfer_into_account, declined_transfer, cash_withdrawal_not_recognised, get_physical_card, edit_personal_details, unable_to_verify_identity, terminate_account, transfer_timing, top_up_limits, pending_cash_withdrawal, disposable_card_limits, getting_spare_card, lost_or_stolen_phone, pending_transfer, receiving_money, cancel_transfer, age_limit, transaction_charged_twice
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_banking77","en") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, sequenceClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_banking77","en")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | bert_sequence_classifier_banking77 |
| Compatibility: | Spark NLP 4.3.1+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [ner] |
| Language: | en |
| Size: | 410.2 MB |
| Case sensitive: | true |
| Max sentence length: | 128 |
References
- https://huggingface.co/philschmid/BERT-Banking77
- https://paperswithcode.com/sota?task=Text+Classification&dataset=BANKING77