Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. multi2convai-logistics-de-bert
is a German model originally trained by inovex
.
Predicted Entities
navigate
, tour.job.delivered
, safeplace
, no
, details.preferedNeighbour
, undefined
, yes
, help
, select
, details.safeplace
, details.avoidNeighbour
, tour.start
, tour.postcode.select
, tour.job.safePlace
, navigate.back
, tour.details
, tour.job.collected
, tour.finish
, tour.job.failed
, tour.job.carriedForward
, tour.job.signature
, details.address
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_multi2convai_logistics_de_bert","de") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, sequenceClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_multi2convai_logistics_de_bert","de")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | bert_sequence_classifier_multi2convai_logistics_de_bert |
Compatibility: | Spark NLP 4.3.1+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | de |
Size: | 412.8 MB |
Case sensitive: | true |
Max sentence length: | 128 |
References
- https://huggingface.co/inovex/multi2convai-logistics-de-bert
- https://multi2conv.ai
- https://multi2convai/en/blog/use-cases
- https://multi2convai/en/blog/use-cases
- https://multi2conv.ai
- https://github.com/inovex/multi2convai