Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. multi2convai-logistics-pl-bert is a Polish model originally trained by inovex.
Predicted Entities
navigate, tour.job.delivered, safeplace, no, details.preferedNeighbour, undefined, yes, help, select, details.safeplace, details.avoidNeighbour, tour.start, tour.postcode.select, tour.job.safePlace, navigate.back, tour.details, tour.job.collected, tour.finish, tour.job.failed, tour.job.carriedForward, tour.job.signature, details.address
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_multi2convai_logistics_pl_bert","pl") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, sequenceClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_multi2convai_logistics_pl_bert","pl")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | bert_sequence_classifier_multi2convai_logistics_pl_bert |
| Compatibility: | Spark NLP 4.3.1+ |
| License: | Open Source |
| Edition: | Official |
| Input Labels: | [document, token] |
| Output Labels: | [ner] |
| Language: | pl |
| Size: | 496.4 MB |
| Case sensitive: | true |
| Max sentence length: | 128 |
References
- https://huggingface.co/inovex/multi2convai-logistics-pl-bert
- https://multi2conv.ai
- https://multi2convai/en/blog/use-cases
- https://multi2convai/en/blog/use-cases
- https://multi2conv.ai
- https://github.com/inovex/multi2convai