Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. multi2convai-quality-it-mbert
is a Italian model originally trained by inovex
.
Predicted Entities
neo.buerstentraegerfalschmontiert
, neo.getriebedeckel
, neo.gehause
, neo.start
, neo.magnet
, neo.schraube
, undefined
, neo.help
, neo.motor.housing
, neo.motor.anchor
, neo.magnetisierung
, neo.motor.brushcollar
, neo.anlaufscheibe
, neo.gearbox
, neo.verschaubung
, neo.zusammenfuehrung
, neo.yes
, neo.magnetklammern
, neo.motor
, neo.motor.worm
, neo.back
, neo.cancel
, neo.hello
, neo.sinterbuchse
, neo.no
, neo.zahnradklein
, neo.buerstentraegerdefekt
, neo.zahnradgross
, neo.anker
, neo.magnet.magnet
, neo.einpressen
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_multi2convai_quality_it_mbert","it") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, sequenceClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_multi2convai_quality_it_mbert","it")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | bert_sequence_classifier_multi2convai_quality_it_mbert |
Compatibility: | Spark NLP 4.3.1+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | it |
Size: | 668.0 MB |
Case sensitive: | true |
Max sentence length: | 128 |
References
- https://huggingface.co/inovex/multi2convai-quality-it-mbert
- https://multi2conv.ai
- https://multi2convai/en/blog/use-cases
- https://multi2convai/en/blog/use-cases
- https://multi2conv.ai
- https://github.com/inovex/multi2convai