Arabic BertForSequenceClassification Cased model (from Yah216)

Description

Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. Poem_Qafiyah_Detection is a Arabic model originally trained by Yah216.

Predicted Entities

ؤ, ح, م, ل, ه, ز, د, ء, غ, ي, ص, ف, ذ, خ, ث, ج, ن, هـ, ط, س, طن, ى, ب, ت, لا, ش, ر, ا, ع, ض, ك, و, هن, ق, ظ

Download Copy S3 URI

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")

sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_poem_qafiyah_detection","ar") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, sequenceClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")

val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")

val sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_poem_qafiyah_detection","ar")
    .setInputCols(Array("document", "token"))
    .setOutputCol("ner")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)

Model Information

Model Name: bert_sequence_classifier_poem_qafiyah_detection
Compatibility: Spark NLP 4.3.1+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [ner]
Language: ar
Size: 467.1 MB
Case sensitive: true
Max sentence length: 128

References

  • https://huggingface.co/Yah216/Poem_Qafiyah_Detection