Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. rubert-base-cased-nli-threeway
is a Russian model originally trained by cointegrated
.
Predicted Entities
neutral
, contradiction
, entailment
How to use
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")
sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_ru_base_cased_nli_threeway","ru") \
.setInputCols(["document", "token"]) \
.setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, sequenceClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")
val sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_ru_base_cased_nli_threeway","ru")
.setInputCols(Array("document", "token"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
Model Name: | bert_sequence_classifier_ru_base_cased_nli_threeway |
Compatibility: | Spark NLP 4.3.1+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [ner] |
Language: | ru |
Size: | 667.1 MB |
Case sensitive: | true |
Max sentence length: | 128 |
References
- https://huggingface.co/cointegrated/rubert-base-cased-nli-threeway
- https://github.com/felipessalvatore/NLI_datasets
- https://github.com/sheng-z/JOCI
- https://cims.nyu.edu/~sbowman/multinli/
- https://aclanthology.org/I17-1011/
- http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
- https://nlp.stanford.edu/projects/snli/
- https://github.com/facebookresearch/anli
- https://github.com/easonnie/combine-FEVER-NSMN/blob/master/other_resources/nli_fever.md
- https://github.com/facebookresearch/Imppres
- https://cs.brown.edu/people/epavlick/papers/ans.pdf
- https://people.ict.usc.edu/~gordon/copa.html
- https://aclanthology.org/I17-1100
- https://allenai.org/data/scitail
- https://github.com/felipessalvatore/NLI_datasets
- https://github.com/verypluming/HELP
- https://github.com/atticusg/MoNLI
- https://russiansuperglue.com/ru/tasks/task_info/TERRa