Description
Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP. bert-wiki-paragraphs is a English model originally trained by dennlinger.
Predicted Entities
1, 0
How to use
documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")
tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")
sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_wiki_paragraphs","en") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("class")
pipeline = Pipeline(stages=[documentAssembler, tokenizer, sequenceClassifier])
data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")
result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
val tokenizer = new Tokenizer()
    .setInputCols("document")
    .setOutputCol("token")
val sequenceClassifier = BertForSequenceClassification.pretrained("bert_sequence_classifier_wiki_paragraphs","en")
    .setInputCols(Array("document", "token"))
    .setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))
val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
Model Information
| Model Name: | bert_sequence_classifier_wiki_paragraphs | 
| Compatibility: | Spark NLP 4.3.1+ | 
| License: | Open Source | 
| Edition: | Official | 
| Input Labels: | [document, token] | 
| Output Labels: | [ner] | 
| Language: | en | 
| Size: | 409.9 MB | 
| Case sensitive: | true | 
| Max sentence length: | 128 | 
References
- https://huggingface.co/dennlinger/bert-wiki-paragraphs
- https://arxiv.org/abs/2012.03619
- https://arxiv.org/abs/1803.09337